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Abstract. The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimi-
sation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method
is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The
theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic
portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness
to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation
risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks
are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of
asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold
parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling
into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the
kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem be-
comes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio
for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has
been tested with MSCI North America, Europe and Pacific total return stock indices.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da
Systems obeying scaling laws – 05.40.Fb Random walks and Levy flights – 05.45.Tp Time series analysis

Introduction

The bridges between statistical physics and financial eco-
nomics have been recently crossed by many of authors,
cf. [1–4]. The topics of research include the descriptive
statistics of the price movements, market microstructure
models and many others. Recently the problem of basket
of assets has attracted attention (cf. [4,5]). The portfo-
lio optimisation has been introduced in 1950s by Harry
Markowitz [6]. The simplicity of portfolio optimisation
problem has made it well-accepted in financial commu-
nity (cf. [7] and references therein). The conventional or
Markowitz portfolio theory (MPT) assumes the Gaussian
probability distribution function for security returns —
this is widely questioned in Econophysics literature. The
recent reports show that even the Lévy stable distribu-
tions are not describing the stochastic process of price
changes [8]. Furthermore, the temporal organisation of the
price increments is also complicated, multifractal, cf. [1].
Apparently, the optimal portfolio question should be re-
considered bearing in mind these very important findings.
However, these revised methods have to be simple and
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robust. Indeed, the statistical data available for the anal-
ysis are typically insufficient for a statistically meaningful
application of advanced and complicated techniques.

In this paper the theory is provided that leads to three-
dimensional portfolio optimisation. In order to keep the
approach as simple as possible, we ignore the multifractal
aspects of the price movements. The risk of the portfolio
is split to two: Gaussian risks and “fat tail” risks. Then,
the portfolio choice is provided for the investors who want
to minimise the absolute drawdowns. In this paper the
Leptokurtic Portfolio Theory is introduced and motivated.
Further, the application is provided. Finally, the approach
is tested based on various international stock indices.

Definitions

Let ri(t, ∆t) be the return of the security i in the portfolio
at time t for recent period of ∆t:

ri(t, ∆t) ≡ ln pi(t) − ln pi(t − ∆t) � pi(t) − pi(t − ∆t)
pi(t − ∆t)

(1)
where pi(t) denotes the price of security i at time t. As
noted earlier, the statistical properties of quantity r(t)
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are well-elaborated in the literature. MPT assumes the
Gaussian distribution — an obvious disagreement with
recent findings [8]. The portfolio return — simple sum of
the returns of portfolio constituents and portfolio risk —
standard deviation σp — are defined as follows:

rp(t, ∆t) =
n∑

i=1

wiri(t, ∆t) (2)

σ2
p =

n∑

i=1

n∑

j=1

wiwjσi,j (3)

where σi,j is the covariation of returns of securities i and j;
σi,i ≡ σ2

i . Under the assumption of Gaussian returns, the
measured historic values of returns and covariations can
be used as a proxy to the future.

The expected (i.e. ex ante) return in time-window τ is
defined as average of previous realisations:

ηi = E(ri) = 〈ri〉τ . (4)

The covariance of returns for security pair is found as
follows:

σi,j = 〈rirj〉τ − 〈ri〉τ 〈rj〉τ = 〈rirj〉τ − ηiηj . (5)

If i = j then the covariance relaxes to simple variance:
σi,i ≡ σ2

i =
〈
r2
i

〉
τ
− η2

i .
It is convenient to represent the portfolio in the matrix

form. Denoting the return and weight vectors respectively
with η and w, equation (2) is rewritten as

rp = ηT w, (6)

where ηT is transpose of η. Further, let C be the matrix
of covariation coefficients with elements of σi,j . The equa-
tion (3) becomes:

σ2
p = wT Cw. (7)

Leptokurtic portfolio theory

What is the quantitative measure of a portfolio risk in
the case of strongly non-Gaussian price fluctuations with
(possibly) infinite variance and Lévy-like spectrum of price
jumps? Note that stable Lévy distribution of price jumps
assumes diverging variance; the power law reported by
Gabaix et al. [8] assumes diverging kurtosis (fourth mo-
ment). In the case of diverging fourth moment, the distri-
butions are called leptokurtic. The tails of the leptokur-
tic distributions are “fatter” than predicted by Gaussian
distribution. In fact, all power-law distributions lead to
leptokurtic distributions and that must be accounted by
determination of risk. The obvious question arises: what
is the risk of portfolios that obey leptokurtic distribu-
tion tails? Here, a model is proposed to offer the port-
folio choice under such assumptions. First, the two types
of fluctuations are separated: the fluctuation or Gaussian
risk (which can be called a “good” risk, because the dis-
tribution tails approach quickly zero) and the drawdown,

or power-law risk (“bad” risk, because the actual portfolio
loss can be much larger than that of predicted by Gaussian
approach). These two types of risk, together with the ex-
pected return, create a three-dimensional space; second
subsection is devoted to the discussion of the portfolio
optimisation in that space. Finally, a simple empirical il-
lustration is provided using international stock indices.

Separation of risks

The power-law distribution of security returns leads to a
large amount of “small” price movements, and few “large”
movements. It is convenient to separate the “noise kernel”
of daily returns — these are the returns which are smaller
than few standard deviations. First, let us assume that
the volatilities are not diverging. Then, the “noise kernel”
is defined as a set of points Q in the n-dimensional space
of returns (where ith axes measures the return ri of the
ith asset) falling into such an ellipsoid where the proba-
bility density function of return vectors is above a (small)
threshold. This threshold serves as a model parameter (see
below). Using the eigenvectors of the covariance matrix as
the orthonormal basis ρi, the ellipsoid is defined as

Q ∈
n∑

i=1

ρ2
i λ

−1
i ≤ nθ, (8)

where λi is the ith eigenvalue of the covariance matrix.
The threshold parameter θ ∼ 1 should be chosen in such a
way that the probability for a return vector falling outside
the ellipsoid, is of the order of few percents; it regulates
the ellipsoid “size” in units of standard deviations. In the
case of two assets, the ellipsoid becomes ellipse, and can
be expressed as

Q ∈ r̃2
i σ2

j + r̃2
j σ2

i − 2r̃ir̃jσi,j ≤ [
2(σ2

i σ2
j − σ2

i,j)
]
θ. (9)

Hereinafter, r̃ denotes the zero-shifted return, i.e. r̃i =
ri − ηi. The shift is necessary to keep the centre of the
ellipse in the 0-point of the coordinates.

For diverging volatilities, the above outlined approach
can be still applied; however, the net volatility is then
a non-stationary quantity and depends on the particular
observed set of extreme price movements. The effect of
these extreme movements can be removed by an iterative
approach: instead of using the net covariance matrix for
the calculation of the noise kernel, the noise kernel’s own
covariance matrix must be used.

The investors are looking for capital appreciation,
in order to achieve the investment performance targets.
What the investors do not like, is fluctuation in asset
prices. Indeed, everybody would be happy to see a linear
appreciation of capital with a suitable growth rate. How-
ever, investors would accept the “normal” fluctuations
with a low standard deviations. What the investors really
want to avoid, is a sharp drawdown in asset prices. Thus,
the risk components should be separated to Gaussian
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Fig. 1. Exclusion of the
noise kernel from covari-
ation analysis. (a) Two
normalised, but correlated
(with ρ � 70%) Gaussian
variables; (b) daily returns
of Standard & Poors’s 500
and DAX equity indices.

(“good”) fluctuation risk, and drawdown risk. This is done
as follows:

Definition 1 (Fluctuation risk). The risk is measured
as the average deviation from average return, i.e. risk is
measured with standard deviation.

Definition 2 (Drawdown risk). The risk is measured
as the likelihood of sharp changes in asset prices. Risk
is the degree of willingness to experience sharp moves in
asset prices.

According to MPT, the drawdown risk in not existing.
This is actually not true, if one thinks back to the history:
stock market crashes have occurred quite frequently: 1929
and 1987, 2000 in US, 1997 South-East Asia, 1998 Russia
are just some well-known examples. In order to separate
the risks, the measure of correlation should be revised.
Here, the concept of exceedance correlation (cf. [9–11]) is
extended. The idea of separation of risks was also sug-
gested by Chow et al. (cf. [12]).

Our simplified approach is as follows. For the calcula-
tion of the fluctuation risk of the portfolio (Def. 1), only
these data points which are in the noise kernel are ac-
counted for. On the other hand, the points outside noise
kernel are used for the calculation of drawdown risk of the
portfolio, and of the related covariance matrix of returns
(Def. 2). Note that the larger the threshold parameter θ,
the larger fluctuations are considered as “normal” or “ac-
ceptable”. To conclude, equations

σi,j|fluc(θ) = 〈r̃i r̃j〉r∈Q − 〈r̃i〉r∈Q 〈r̃j〉r∈Q (10)

and

σi,j|draw(θ) = 〈r̃i r̃j〉r�Q − 〈r̃i〉r�Q 〈r̃j〉r�Q (11)

are used to calculate the covariation coefficients for fluctu-
ation risk and drawdown risk respectively. Here, 〈· · · 〉r∈Q

(and 〈· · · 〉r�Q) denote averaging over all the return vec-
tors r belonging (and not belonging) to the kernel Q. The
covariation matrix C used in MPT [cf. Eq. (7)] is thus
split into C∈Q and C�Q, corresponding to the fluctuation
and drawdown regimes, respectively.

The separation of noise kernel is shown schematically
in Figure 1, where the data points and their linear re-
gression lines are plotted.In the left panel of Figure 1, two
normalised (with zero mean and unit standard deviation),
but correlated (ρ � 70%) random Gaussian variables are
plotted. The noise-kernel corresponds to the threshold pa-
rameter θ = 1. We are dealing with a pure Gaussian dis-
tribution; therefore, the correlation does not change with
the exclusion of the noise kernel. A different behaviour is
observed in the right panel of Figure 1. There are daily
returns plotted for US Standard & Poors’ 500 (spx) and
German Deutsche Aktieindex (dax) equity indices. The
period ranged from September 1959 to March 2004 (i.e.
total more than 11 000 data points) and the kernel was
defined with parameter θ = 3. As seen, the noise kernel
and the rest of the data have quite different correlations.

Application of LPT

Leptokurtic Portfolio Theory (LPT) is a simple general-
isation of MPT. Equations (9) and (11) yield non-trivial
results only when large asset price jumps (drawdowns) ex-
ist. The boundary between the ordinary fluctuation risk
and extraordinary drawdown risk is defined by the pa-
rameter θ. Here, we have presented market data analy-
sis with θ = 3; the value θ = 2 yields similar results.
Note that in the case of Gaussian distribution, the events
fall into three standard deviations with probability equal
to 99.73%, which seems to be a reasonable crossover point.

The application of LPT introduces additional dimen-
sion to the Gaussian risk return space: non-Gaussian risks.
So, the portfolios are evaluated in three-dimensional space
containing two types of risks, and the return. This allows
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Table 1. Covariation matrices of MSCI North America and MSCI Pacific covariations.

MPT Fluctuation Drawdown

σNA,P NA P NA P NA P

NA 0.1959% 0.1037% 0.1365% 0.0797% 0.8648% 0.3427%

P 0.1037% 0.3563% 0.0797% 0.2647% 0.3427% 1.4603%

us to separate the fluctuation and drawdown risks and
the portfolio choice gets more complicated. Investors must
choose an optimal balance between the Gaussian risk and
return, but they have also to evaluate the potential of the
“out-of-statistics” drawdowns. To elaborate this concept,
consider the example of Figure 1b. Suppose the investor
is willing to invest into a combination of the indices of
SPX and DAX. If the investor is accepting the fluctua-
tions within three standard deviations, but he is unwilling
to accept the large drawdowns, then he should invest into
a portfolio with minimised drawdown risk. On the other
hand, if the low values of the average short-term Gaussian
fluctuation is more highly prioritised than the desire to
minimise the likelihood of drawdowns, minimised kernel-
risk portfolio satisfies the investment goal.

Equation (4) provides the definition of returns in MPT.
In the spirit of LPT, one could wish to distinguish between
“ordinary” (Gaussian) and “extraordinary” returns. How-
ever, in the case of predicted returns, such splitting seems
unjustified: first of all, because the use of historic returns
as a proxy to the future returns is far from being justified.
Indeed, due to the non-stable nature and non-stationarity
of returns, there will be large differences between short-
term realisations. This will inevitably lead to the fact that
historic returns do not provide the valid forecast to the fu-
ture returns — a circumstance that is easy to check in any
financial time series. In fact, the expected return of the se-
curity depends also on the choice of investment horizon —
it varies from investor to investor. To conclude, we leave
the expected return un-splitted and prefer more funda-
mental (i.e. economic result based) approach in estimating
the future returns.

Empirical evidence: the validity of LPT

In previous, we have defined the idea of separation of
risks and their measures. Here, the empirical evidence is
provided. We construct the portfolios by using monthly
data of the following Morgan Stanley Capital Interna-
tional (MSCI) total return indices: MSCI Europe (here-
inafter denoted as E), MSCI North America (NA) and
MSCI Pacific (P) in the period from December 1969 to
February 2005 (total more than 420 months). In this pa-
per, we only look at the examples of pairs of securities.
The portfolio problem with N securities will be addressed
in future. The method used is the following:

1. we take the pair of securities and find the noise kernels
with θ = 1, 2, 3 according to equation (9);

2. we determine the kernel and non-kernel covariations
according to equations (10) and (11);
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Fig. 2. Determination of minimum risk portfolios of MSCI
North America and MSCI Pacific time series.

3. we determine the minimum-risk portfolios according to
fluctuation, drawdown and Markowitz definition (the
latter is simply aggregated standard deviation of kernel
and non-kernel) with parameter θ = 1, 2, 3;

4. we back-test the minimum-risk portfolios with the
same data-set by investing hypothetical unit currency
in December 1969.

This process is illustrated with an example of MSCI North
America and MSCI Pacific time series. In Table 1, the cor-
relation matrices are presented for MPT, Fluctuation, and
Drawdown methods using the value θ = 3. In Figure 2, the
portfolio choice is shown using the same data as in Table 1.
The risk-return space in Figure 2 is constructed in a spirit
of MPT: in the abscissa, the risk in annualised standard
deviations is plotted. Note that for different portfolio sets,
the different definitions of covariations and standard de-
viations are used. The portfolios with minimum variance
are marked with circles.

Finally, a simple back-test is performed with portfo-
lios found as follows: a hypothetical unit of currency is
invested into optimal portfolios found in previous step as
of December 1969. The portfolio is re-balanced with ini-
tial allocations found on monthly basis. LPT is valid when
the portfolios which are optimised for drawdowns provide
smaller extreme drawdowns than portfolios which are op-
timised for variance (i.e. MPT portfolios).
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Table 2. The return statistics of MSCI North America/Pacific portfolios that are minimized under different definitions of risk.

Risk type MPT risk Fluctuation risk Drawdown risk

Min −23.3% −23.4% −23.13%

Max 14.39% 14.1% 14.92%

Mean 0.9% 0.9% 0.91%

Standard deviation 4.2% 4.21% 4.18%

Mean (annualised) 10.83% 10.79% 10.89%

Std. dev. (annualised) 14.54% 14.59% 14.48%

This test was carried out for all three above-mentioned
security pairs for θ ∈ [1, 5], total 15 times. In Table 2, the
back-test is presented with previous example of NA and P.

Our results confirmed the theory: in all 15 cases the
portfolio found by using LPT provided smaller absolute
drawdown. Interestingly, all of the LPT portfolios had also
higher return compared to those optimised for MPT.

Discussion

A simple and robust method of non-Gaussian portfolio
optimisation has been devised. The concept of Gaussian
noise kernel for the vector of daily asset return vectors led
us to the separation of two types of risks. The portfolios
that were designed to minimise drawdown risk provided
higher average return with lower maximum drawdowns,
than the minimum-risk portfolio according to the MPT.
Although we have found very good results with the given
data-sets, there is a clear need for further extensive anal-
ysis with real data and portfolios consisting of more than
two assets.
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